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JOHN T. KENT*

Comment

1. OVERVIEW

Sliced inverse regression (SIR) looks like a novel and
fascinating method for the analysis of multivariate data. In
my discussion, I would like to look at the method more
geometrically and to bring out some links with other well
established methods of statistical analysis. It will be useful
to split the discussion into two parts: a restatement of the
theoretical model and a description of the numerical cal-
culations.

First though, some notation from linear algebra is needed.
If U C R’ is a K-dimensional subspace, let P, denote the
p X p symmetric idempotent matrix representing orthogo-
nal projection onto U. In particular, for all vectors z € R
(regarding z as a column vector), Pyz € U, and, further,
if z € U, then Pyz = z. Next, let U, denote the comple-
mentary orthogonal subspace to U in R?. Then P, + Py,
= I, the p X p identity matrix, and z = Pyz + Py z rep-
resents the unique decomposition of z into a sum of an ele-
ment of U plus an element of U, .

2. THEORETICAL MODEL BEHIND SIR

Let (y, x) be a (p + 1)-dimensional random vector, with
y € R', and x € R’. Let X denote the covariance matrix
of x and set z = 37/?x, so that the covariance matrix of
zis I,. With some slight simplification, Li’s model involves
the following assumptions. (a) The standardized random
vector z is spherically distributed about its mean. (b) For
some subspace U C R’ of dimension K say, y is condi-
tionally independent of P, z, given Pyz. (This is the un-
derlying property enabling dimension reduction.) (c) The
span of E(z | y), as y varies, equals all of U. (d) The con-
ditional expectation E(z | y) is continuous in y.

Li’s key observation is that under assumptions (a) and
(b), E(z | y) € U. Assumption (c) is a strengthened form
of this result. Assumption (d) forms the basis of his nu-
merical procedure for estimating this conditional expecta-
tion in practice.

Assumption (b) can be rephrased in terms of the original
x variables. Indeed it can be argued that the subspaces
32y = U*, say, and 32U, = U%, say, in terms of the
original x variables, are more natural than U and U, . Some
care is needed, however, because U* and U* will no longer
necessarily be orthogonal.

If (y, x) follows a (p + 1)-dimensional normal distri-
bution, with y not independent of x, then E(z | y) will be
linear in y (i.e., K = 1). Thus for K > 1, SIR can be re-
garded as a method for detecting certain sorts of nonline-
arity in the regression..

To compare two K-dimensional subspaces in z space, U
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and V say, a natural distance can be given in terms of the
projection matrices,

d*(U, V) = u(Py — P,)* = 2(K — trP,Py).

Furthermore, it can be shown that K~ 'trP, P, reduces to the
trace correlation mentioned by Li in Section 2.

3. NUMERICAL CALCULATIONS IN SIR

Let (y;, x) (i = 1, ..., n) be a set of data from the above
model. Li suggests “slicing” the y values into H groups,
say. Then the SIR algorithm is the same as a classical mul-
tivariate discriminant analysis on the x variables using these
H groups; see for example, Mardia et al. (1979, chaps. 11
and 12). This point of view is hinted at in Section 4. Thus
let W,, B,, and T, denote the usual p X p matrices for the
“within-groups,” “between-groups,” and “total” sum of
squares and products matrices for the x variables, with W,
+ B, = T,. If K is known, the subspace U* is estimated
by the span of the eigenvectors corresponding to the K larg-
est eigenvalues of T; 'B,, or equivalently of W;'B,. The
linear combinations of x defined by these eigenvectors are
known as canonical variates.

Geometric insight into these canonical variates can be en-
hanced by a judicious transformation. Let z; = T, V2¢. so
that T, = I,, where in an obvious notation T, denotes the
total sum of squares and products matrix in the z variables.
This transformation, up to a proportionality constant, is the
sample counterpoint to the standardization used above in
the population model. In terms of the z variables, the de-
sired subspace is determined by the first K eigenvectors of
B,. A rotation to these eigenvectors in the z variables is
essentially the same as that used by Li in his graphical dis-
plays of Section 6.3.

On the other hand, in discriminant analysis it is more
usual to make a transformation to v, = W} /?x,, for which
W, = I,. Again, the desired subspace is found by taking
dominant eigenvectors, this time of B,. The eigenvectors
are the same as in the preceding paragraph but with dif-
ferent eigenvalues. Hence a plot of the canonical variates
is the same as before but with different scalings for the
axes. It would be interesting to know whether plots of the
data in the v variables offer any extra insight beyond plots
in the z variables. It might also be helpful to mark the H
groups separately in the plots.

In conventional discriminant analysis, it is assumed that
the population within-group covariance matrix is the same
for all groups. In the present context this is the same as
assuming that cov(z | y) does not depend on y. Li points
out that this homogeneity assumption is not needed for SIR,
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and indeed he suggests that any heterogeneity might be used
to help estimate U when the span of E(z | y) is not all of
U. It would be interesting to see how these ideas work out
in practice.

4. OPEN QUESTIONS

Let me finish with some questions about the likely be-
havior of SIR in practice and some issues that need more
careful study.

1. How heavily does the performance of SIR depend on
the sphericity assumption on z? Is a violation of sphericity
likely to be a problem in practice?

2. What is the effect of changing the number of slices
H? Clearly a large H will cut down the variability in B,,
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whereas a small value of H will cut down the variability in
W,. The pleasing results from the simulation study may be
due merely to the relatively large sample sizes. I suspect
some normal theory calculations might be able to offer some
quantitative insight into an optimal choice of H.

3. The conditional expectation E(z | y) may be of in-
herent interest, and it should be plotted along with the other
data summaries. SIR essentially fits a piecewise constant
function to this conditional expectation as y varies. Other
fits would also be of interest, such as splines. Indeed some-
thing like a spline fit might be used to generalize the whole
SIR procedure.

Lastly, I look forward with interest to seeing some real
examples where the use of SIR has enhanced the interpre-
tation of the data.

Rejoinder

First, I would like to thank the discussants for their thought-
provoking comments. I appreciate their support on SIR, as
evidenced by the richness of their discussions in highlight-
ing some obscure facets of SIR, in demonstrating SIR’s
power, and in proposing several extensions. I agree with
them that this article is just the beginning of something that
might evolve into routine practice in data analysis. There
is much to be done to reach that point. Since the idea of
SIR was conceived, I have gathered a string of related ideas
and results. I am pleased to find some of these in agreement
with key suggestions from the discussants.

For example, the connection with classical discriminant
analysis suggested by Kent was addressed in Li (1989).
Chun-Houh Chen is now working on SIR’s application in
the classification tree context. He is also working with me
on SIRII, second-moment based SIR, which appears to have
a good deal of overlap with the SAVE suggested by
Cook and Weisberg. The proposals by Hirdle and Tsyba-
kov based on a different viewpoint are stimulating in build-
ing up a better theory for dimension reduction and data
visualization.

Another shortcoming of this article, the application of
SIR to real data, was remedied by several examples in Cook
and Weisberg’s discussion. To further ease the reader’s mind
on the applicability of SIR, let me briefly comment on my
own efforts in this vein, reported elsewhere. For instance,
the Boston housing data (Harrison and Rubinfeld 1978) are
treated in Li (1989), where, with SIR, we reduced the num-
ber of regressors from thirteen to three and found a slide-
(or helix-) looking data cloud. In Li (1990a), a six-variable
function describing the voltage level of a push—pull circuit
in television manufacturing was visualized by SIR. Li

(1990b) demonstrated how SIR could be applied to the re-
sidual analysis for the Los Angeles ozone data (Breiman
and Friedman 1985). Regarding small data sets, the wor-
sted yarn data (Box and Cox 1964), which has 27 obser-
vations for a 3> factorial design, was reanalyzed with SIR,
recovering the logarithm transformation of y well.

In the following, I will first concentrate on three major
issues raised by the discussants: (1) design condition, (2)
second moment SIR (SIRII), and (3) distribution of eigen-
values. After that, I will respond to each discussant sepa-
rately. The last section is added to address Brillinger’s dis-
cussion, which arrived late.

1. DESIGN CONDITION

I agree with all discussants that the most controversial
condition in this article is (3.1). As Cook and Weisberg
have explicitly pointed out, in order to guarantee this con-
dition before analyzing the data, we need to check if x is
elliptically symmetric. I would like to reemphasize, how-
ever, that (3.1) is in fact much weaker than the elliptic sym-
metry because the linear conditional expectation only needs
to hold for the B,’s that are in the e.d.r. space. Thus if we
are lucky, we can still have (3.1) without elliptic symme-
try. Cook and Weisberg gave a nice illustration of how this
might happen. But, of course, the first question is how often
can we be so lucky? The next question is what to do if we
are not. Both will be discussed here.

© 1991 American Statistical Association
Joumnal of the American Statistical Association
June 1991, Vol. 86, No. 414, Theory and Methods



